4,874 research outputs found

    Noise induced rupture process: Phase boundary and scaling of waiting time distribution

    Full text link
    A bundle of fibers has been considered here as a model for composite materials, where breaking of the fibers occur due to a combined influence of applied load (stress) and external noise. Through numerical simulation and a mean-field calculation we show that there exists a robust phase boundary between continuous (no waiting time) and intermittent fracturing regimes. In the intermittent regime, throughout the entire rupture process avalanches of different sizes are produced and there is a waiting time between two consecutive avalanches. The statistics of waiting times follows a Gamma distribution and the avalanche distribution shows power law scaling, similar to what have been observed in case of earthquake events and bursts in fracture experiments. We propose a prediction scheme that can tell when the system is expected to reach the continuous fracturing point from the intermittent phase.Comment: 6 pages, 8 figure

    Identification of Rocks and Their Quartz Content in Gua Musang Goldfield Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Imagery

    Full text link
    © 2017 Kouame Yao et al. Quartz is an important mineral element and the most abundant rock-forming mineral that controls the mineralogy of a reservoir. At the surface, quartz is more stable than most other rock minerals because it is made up of interlocking silica that makes it quite resistant to mechanical weathering. Quartz abundance is an indication of mineralization in many metal deposits; therefore, identification and mapping of quartz in rocks are of great value for exploration and resource potential assessments. In this study, thermal infrared (TIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery were used to identify quartz contained rocks in Gua Musang. First, the image was corrected for atmospheric effect and the study area subset for further processing. Thereafter, spectral transformation (principal component analysis (PCA)) was implemented on the TIR bands and the resulting principal component (PC) images were analysed. The three optimal PCs were selected using the strength of spectral interaction and the eigenvalues of each band. To discriminate between quartz-rich and quartz-poor rocks, RGB false colour composite and greyscale image of one of the PCs were analysed. The result shows that volcanogenic igneous rock and carbonate sedimentary rocks of Permian formation are quartz-poor while Triassic sedimentary rock made up of organic particles and sandstone is quartz-rich. On the contrary, the quartz content in the metamorphic rock varies across the area but is richer in quartz content than the igneous and carbonate rocks. Classification of the composite image classified using maximum likelihood (ML) supervised classification method produced overall accuracy and Kappa coefficient of 96.53%, and 0.95, respectively

    Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS

    Full text link
    © 2018 Elsevier Ltd Every year, gully erosion causes substantial damage to agricultural land, residential areas and infrastructure, such as roads. Gully erosion assessment and mapping can facilitate decision making in environmental management and soil conservation. Thus, this research aims to propose a new model by combining the geographically weighted regression (GWR) technique with the certainty factor (CF) and random forest (RF) models to produce gully erosion zonation mapping. The proposed model was implemented in the Mahabia watershed of Iran, which is highly sensitive to gully erosion. Firstly, dependent and independent variables, including a gully erosion inventory map (GEIM) and gully-related causal factors (GRCFs), were prepared using several data sources. Secondly, the GEIM was randomly divided into two groups: training (70%) and validation (30%) datasets. Thirdly, tolerance and variance inflation factor indicators were used for multicollinearity analysis. The results of the analysis corroborated that no collinearity exists amongst GRCFs. A total of 12 topographic, hydrologic, geologic, climatologic, environmental and soil-related GRCFs and 150 gully locations were used for modelling. The watershed was divided into eight homogeneous units because the importance level of the parameters in different parts of the watershed is not the same. For this purpose, coefficients of elevation, distance to stream and distance to road parameters were used. These coefficients were obtained by extracting bi-square kernel and AIC via the GWR method. Subsequently, the RF-CF integrated model was applied in each unit. Finally, with the units combined, the final gully erosion susceptibility map was obtained. On the basis of the RF model, distance to stream, distance to road and land use/land cover exhibited a high influence on gully formation. Validation results using area under curve indicated that new GWR–CF–RF approach has a higher predictive accuracy 0.967 (96.7%) than the individual models of CF 0.763 (76.3%) and RF 0.776 (77.6%) and the CF-RF integrated model 0.897 (89.7%). Thus, the results of this research can be used by local managers and planners for environmental management

    Evolution of Generalized Brans-Dicke parameter within a Superbounce scenario

    Full text link
    We have studied a superbounce scenario in a set up of Brans-Dicke (BD) theory. The BD parameter is considered to be time dependent and is assumed to evolve with the Brans-Dicke scalar field. In the superbounce scenario, the model bounces at an epoch corresponding to a Big Crunch provided the ekpyrotic phase continues until that time. Within the given superbounce scenario, we investigate the evolution of the BD parameter for different equations of state. We chose an axially symmetric metric that has an axial symmetry along the x-axis. The metric is assumed to incorporate an anisotropic expansion effect. The effect of asymmetric expansion and the anisotropic parameter on the evolving and the non-evolving part of the BD parameter is investigated.Comment: 10 pages, 5 figures, accepted version of the journal Symmetr

    Identification of erosion-prone areas using different multi-criteria decision-making techniques and gis

    Full text link
    © 2018 The Author(s). The awareness of erosion risk in watersheds provides the possibility of identifying critical areas and prioritising protective and management plans. Soil erosion is one of the major natural hazards in the rainy mountainous regions of the Neka Roud Watershed in Mazandaran Province, Iran. This research assesses soil erosion susceptibility through morphometric parameters and the land use/land cover (LU/LC) factor based on multiple-criteria decision-making (MCDM) techniques, remote sensing and GIS. A set of 17 linear, relief and shape morphometric parameters and 5 LU/LC classes are used in the analysis. The aforementioned factors are selected as indicators of soil erosion in the study area. Then, four MCDM models, namely, the new additive ratio assessment (ARAS), complex proportional assessment (COPRAS), multi-objective optimisation by ratio analysis and compromise programming, are applied to the prioritisation of the Neka Roud sub-watersheds. The Spearman’s correlation coefficient test and Kendall’s tau correlation coefficient test indices are used to select the best models. The validation of the models indicates that the ARAS and COPRAS models based on morphometric parameters and LU/LC classes, respectively, achieve the best performance. The results of this research can be used by planners and decision makers in soil conservation and in reducing soil erosion

    Assessment of landslide susceptibility using statistical- and artificial intelligence-based FR-RF integrated model and multiresolution DEMs

    Full text link
    © 2019 by the authors. Landslide is one of the most important geomorphological hazards that cause significant ecological and economic losses and results in billions of dollars in financial losses and thousands of casualties per year. The occurrence of landslide in northern Iran (Alborz Mountain Belt) is often due to the geological and climatic conditions and tectonic and human activities. To reduce or control the damage caused by landslides, landslide susceptibility mapping (LSM) and landslide risk assessment are necessary. In this study, the efficiency and integration of frequency ratio (FR) and random forest (RF) in statistical- and artificial intelligence-based models and different digital elevation models (DEMs) with various spatial resolutions were assessed in the field of LSM. The experiment was performed in Sangtarashan watershed, Mazandran Province, Iran. The study area, which extends to 1072.28 km2, is severely affected by landslides, which cause severe economic and ecological losses. An inventory of 129 landslides that occurred in the study area was prepared using various resources, such as historical landslide records, the interpretation of aerial photos and Google Earth images, and extensive field surveys. The inventory was split into training and test sets, which include 70 and 30% of the landslide locations, respectively. Subsequently, 15 topographic, hydrologic, geologic, and environmental landslide conditioning factors were selected as predictor variables of landslide occurrence on the basis of literature review, field works and multicollinearity analysis. Phased array type L-band synthetic aperture radar (PALSAR), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), and SRTM (Shuttle Radar Topography Mission) DEMs were used to extract topographic and hydrologic attributes. The RF model showed that land use/land cover (16.95), normalised difference vegetation index (16.44), distance to road (15.32) and elevation (13.6) were the most important controlling variables. Assessment of model performance by calculating the area under the receiving operating characteristic curve parameter showed that FR-RF integrated model (0.917) achieved higher predictive accuracy than the individual FR (0.865) and RF (0.840) models. Comparison of PALSAR, ASTER, and SRTM DEMs with 12.5, 30 and 90 m spatial resolution, respectively, with the FR-RF integrated model showed that the prediction accuracy of FR-RF-PALSAR (0.917) was higher than FR-RF-ASTER (0.865) and FR-RF-SRTM (0.863). The results of this study could be used by local planners and decision makers for planning development projects and landslide hazard mitigation measures

    A review of neural networks in plant disease detection using hyperspectral data

    Get PDF
    © 2018 China Agricultural University This paper reviews advanced Neural Network (NN) techniques available to process hyperspectral data, with a special emphasis on plant disease detection. Firstly, we provide a review on NN mechanism, types, models, and classifiers that use different algorithms to process hyperspectral data. Then we highlight the current state of imaging and non-imaging hyperspectral data for early disease detection. The hybridization of NN-hyperspectral approach has emerged as a powerful tool for disease detection and diagnosis. Spectral Disease Index (SDI) is the ratio of different spectral bands of pure disease spectra. Subsequently, we introduce NN techniques for rapid development of SDI. We also highlight current challenges and future trends of hyperspectral data

    Bianchi Type-II String Cosmological Models in Normal Gauge for Lyra's Manifold with Constant Deceleration Parameter

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings in normal gauge for Lyra's manifold by applying the variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ\theta) in the model is proportional to the component σ 11\sigma^{1}_{~1} of the shear tensor σij\sigma^{j}_{i}. This condition leads to A=(BC)mA = (BC)^{m}, where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β\beta behaves like cosmological term Λ\Lambda in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the decelerating universe whereas strings dominate in the accelerating universe. Some physical and geometric behaviour of these models are also discussed.Comment: 24 pages, 10 figure
    corecore